The purification and properties of Escherichia coli methylglyoxal synthase.

نویسندگان

  • D J Hopper
  • R A Cooper
چکیده

1. Methylglyoxal synthase was purified over 1500-fold from glycerol-grown Escherichia coli K 12 strain CA 244. The purified enzyme was inactivated by heat or proteolysis, had a molecular weight of approx. 67000, a pH optimum of 7.5 and was specific for dihydroxyacetone phosphate with K(m) 0.47mm. 2. The possibility that a Schiff-base intermediate was involved in the reaction mechanism was investigated but not confirmed. 3. The purified enzyme lost activity, especially at low temperature, but could be stabilized by P(i). Two binding sites for P(i) may be present on the enzyme. Of other compounds tested only the substrate, dihydroxyacetone phosphate, and bovine serum albumin showed any significant stabilizing effect. 4. Phosphoenolpyruvate, 3-phosphoglycerate, PP(i) and P(i) were potent inhibitors of the enzyme. Kinetic experiments showed that PP(i) was apparently a simple competitive inhibitor, but inhibition by the other compounds was more complex. In the presence of P(i) the enzyme behaved co-operatively, with at least three binding sites for dihydroxyacetone phosphate. 5. It is proposed that methylglyoxal synthase and glyceraldehyde 3-phosphate dehydrogenase play important roles in the catabolism of the triose phosphates in E. coli. Channelling of dihydroxyacetone phosphate via methylglyoxal would not be linked to ATP formation and could be involved in the uncoupling of catabolism and anabolism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of methylglyoxal synthase from Clostridium acetobutylicum ATCC 824 and its use in the formation of 1, 2-propanediol.

A gene encoding a putative 150-amino-acid methylglyoxal synthase was identified in Clostridium acetobutylicum ATCC 824. The enzyme was overexpressed in Escherichia coli and purified. Methylglyoxal synthase has a native molecular mass of 60 kDa and an optimum pH of 7.5. The Km and Vmax values for the substrate dihydroxyacetone phosphate were 0.53 mM and 1.56 mmol min(-1) microgram(-1), respectiv...

متن کامل

Metabolic engineering of a 1,2-propanediol pathway in Escherichia coli.

1,2-Propanediol (1,2-PD) is a major commodity chemical that is currently derived from propylene, a nonrenewable resource. A goal of our research is to develop fermentation routes to 1,2-PD from renewable resources. Here we report the production of enantiomerically pure R-1,2-PD from glucose in Escherichia coli expressing NADH-linked glycerol dehydrogenase genes (E. coli gldA or Klebsiella pneum...

متن کامل

Effect of Concomitant Lycopene Biosynthesis on CoQ10 Accumulation in Transformed Escherichia coli Strains

CoQ10 and lycopene are isoprenoid compounds with nutraceutical and pharmaceutical benefits. In this study, the effect of concomitant lycopene biosynthesis on CoQ10 accumulation in transformed Escherichia coli DH5α was studied. A lycopene production pathway including geranylgeranyl diphosphate synthase (crtE), phytoene synthase (crtB), and phytoene desaturase (crtI) from Erwinia herbicola was co...

متن کامل

Production, Purification and Characterization of Chicken Egg Yolk Monoclonal Antibody Against Colonization factor antigen -1 of Enterotoxigenic Escherichia coli Causing Diarrhea

Enterotoxigenic Escherichia coli (ETEC) causes diarrhea in both humans and animals. The contaminated food and water are the most common vehicles for ETEC infection. The colonization factor antigen (CFA-1) is a fimbriae protein that promotes adherence of the ETEC strain to the epithelium of the small intestine of the host. In this study IgY proteins were produced against the CFA-1 of ETEC in imm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 128 2  شماره 

صفحات  -

تاریخ انتشار 1972